Digital Twin Assisted Task Offloading for Aerial Edge Computing and Networks

نویسندگان

چکیده

Considering the user mobility and unpredictable mobile edge computing (MEC) environments, this paper studies intelligent task offloading problem in unmanned aerial vehicle (UAV)-enabled MEC with assistance of digital twin (DT). We aim at minimizing energy consumption entire system by jointly optimizing terminal users (MTUs) association, UAV trajectory, transmission power distribution computation capacity allocation while respecting constraints mission maximum processing delays. Specifically, double deep Q-network (DDQN) algorithm stemming from reinforcement learning is first proposed to effectively solve MTUs association trajectory. Then, closed-form expression employed handle further addressed via an iterative algorithm. Numerical results show that our scheme able converge significantly reduce total compared benchmark schemes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...

متن کامل

Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks

Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud to the network edge, thereby meeting the latency requirements of many emerging mobile applications and saving backhaul network bandwidth. Although many existing works have studied computation offloading policies, service caching is an equally, if not more important, design topic of MEC, yet receives muc...

متن کامل

Computation Peer Offloading for Energy-Constrained Mobile Edge Computing in Small-Cell Networks

The (ultra-)dense deployment of small-cell base stations (SBSs) endowed with cloud-like computing functionalities paves the way for pervasive mobile edge computing (MEC), enabling ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. To handle spatially uneven computation workloads in the network, cooperation among SBSs via workload p...

متن کامل

Learning-Based Task Offloading for Vehicular Cloud Computing Systems

Vehicular cloud computing (VCC) is proposed to effectively utilize and share the computing and storage resources on vehicles. However, due to the mobility of vehicles, the network topology, the wireless channel states and the available computing resources vary rapidly and are difficult to predict. In this work, we develop a learning-based task offloading framework using the multi-armed bandit (...

متن کامل

UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design

With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Vehicular Technology

سال: 2022

ISSN: ['0018-9545', '1939-9359']

DOI: https://doi.org/10.1109/tvt.2022.3182647